

Deep Inelastic and Deep Exclusive Results from Jefferson Lab

Keith Griffioen
College of William & Mary

griff@physics.wm.edu

Deep Inelastic Scattering 2011
Newport News, Virginia
11 April 2011

11 April 2011 DIS 2011

Introduction

- The only thing we can measure is a cross section.
- But by separating kinematics from nucleon structure, we can identify robust, experimentally determined objects, the structure functions:

$$\frac{d\sigma}{dx\,dy\,d\psi} = \frac{2\alpha^2}{xy\,Q^2}\,\frac{y^2}{2\,(1-\varepsilon)}\left\{\!\!\left[F_T\!\right] \!\!+ \varepsilon\!\!\left[F_L\!\right] \!\!+ S_{\parallel}\lambda_e\,\sqrt{1-\varepsilon^2}\,2x\!\!\left[g_1-\gamma^2g_2\right)\right] \\ - \left|S_{\perp}\right|\lambda_e\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_S\,2x\gamma\!\!\left[g_1+g_2\right]\!\!\right\}$$

- •Thus, F_T , F_L , g_1 , $g_2(x,Q^2)$ can be extracted for all x, Q^2 .
- Experiment tells us where these can be interpreted in terms of parton distribution functions in pQCD and where complications show up.
- PDFs are known only through model fitting of structure functions.
- More so for transverse momentum dependent distributions and generalized parton distributions

11 April 2011 **DIS 2011**

JLab Kinematic Coverage

Jefferson Lab Halls

JLab Talks @ DIS2011

- ★WG1PS2: Jeff Owens Uncertainties in determining the d quark PDF at large values of x
- **★WG1PS2: Slava Tkachenko Model independent extraction of neutron structure functions from deuterium data**
- **★WG1PS7: Peter Monaghan First Extraction of F_L Moments from World Data**
- **★WG1PS7: Ibrahim Albayrak** ... Deuteron F_L ... and Extractions of the Deuteron and Non-Singlet Moments
- ★WG1PS9: Silvia Pisano Results and Achievements at CLAS
- **★WG1PS9: Simona Malace** *Quark-hadron duality*
- ***WG1PS10:** Patricia Solvignon The nuclear dependence of $R=\sigma_L/\sigma_T$ in Deep Inelastic Scattering
- ★WG2PSVM: Valery Kubarovsky *Vector-mesons production and DVCS at JLab*
- ★WG4SINS: Hayk Hakobyan Quark propagation and hadron formation in the nucleus
- **★WG4SINS: Sergio Anefalos Pereira Strangeness production in CLAS**
- ★WG6PSH1: Vincent Sulkosky Neutron spin sum rules and spin polarizabilities at low Q²
- ★WG6PSH1: Hovhannes Baghdasaryan Preliminary proton spin asymmetry results from SANE
- **★WG6PSH2:** Nilanga Liyanage *Moments of the neutron g₂ structure function and ... higher-twist effects*
- **★WG6PST2: Jin Huang Measurement of double spin asymmetry ALT**
- ★WG6PST3: Hamlet Mkrtchyan The quark-parton model and low-energy factorization studies ...
- ★WG6PST3: Sucheta Jawalkar Spin azimuthal asymmetries on longitudinally polarized proton
- ★WG6PST3: Wes Gohn Beam single spin asymmetries in SIDIS from an unpolarized proton
- ★WG6PST4: Kalyan Allada Single spin asymmetry results from neutron
- **★WG6PST4: Aram Kotzinian SIDIS in target fragmentation region**
- **★WG6PST4: Todd Averett** *Target single spin asymmetry measurements*
- **★WG6PSTV**: Marco Mirazita Lambda polarization in electroproduction at CLAS
- ★WG6PSHP1: Yohann Perrin Coherent deeply virtual Compton scattering off helium (CLAS)
- ★WG6PSHP1: Andrey Kim Studies of exclusive processes with a longitudinally polarized target
- **★WG7PS3:Dave Gaskell, Xin Qian, Yelena Prok, Javier Gomez, Francois-Xavier Girod, Gordon D. Cates 12 GeV**

Inclusive DIS

$$\frac{d\sigma}{dx\,dy\,d\psi} = \frac{2\alpha^2}{xy\,Q^2}\,\frac{y^2}{2\,(1-\varepsilon)}\left\{ F_T + \varepsilon F_L + S_{\parallel}\lambda_e\,\sqrt{1-\varepsilon^2}\,2x(g_1-\gamma^2g_2) - |S_{\perp}|\lambda_e\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_S\,2x\gamma(g_1+g_2) \right\}$$

DIS 2011

Hall C Measurements of F_L

- **★WG1PS7: Peter Monaghan First Extraction of F**_L Moments from World Data
- **★WG1PS7: Ibrahim Albayrak** ... Deuteron F_L ... and Extractions of the Deuteron and Non-Singlet Moments

E04-110 proton

E00-002, Deuteron

- Rosenbluth separation of F_L and F_T
- Moments require data at all x, including the resonance region

Hall C Duality Averaging

★WG1PS9: Simona Malace Quark-hadron duality

$$F_2^{\text{TMC}}(x, Q^2) = \frac{x^2}{\xi^2 r^3} F_2^{(0)}(\xi) + \frac{6M^2 x^3}{Q^2 r^4} h_2(\xi) + \frac{12M^4 x^4}{Q^4 r^5} g_2(\xi)$$

Hall C Christy

$$h_2(\xi,Q^2) = \int_{\xi}^1 du \; rac{F_2^{(0)}(u,Q^2)}{u^2}$$

$$g_2(\xi,Q^2) = \int_{\xi}^1 du \ h_2(u,Q^2)$$

X

Hall C Moments of FL

★WG1PS7: Peter Monaghan First Extraction of F_L Moments from World Data

Cornwall-Norton Moments

$$M_n^{2,L}(Q^2) \equiv \int_0^1 dx \ x^{n-2} F_{2,L}(x,Q^2)$$

Analysis of P. Monoghan, et. al

Hall C Determination of R

★WG1PS10: Patricia Solvignon *The nuclear dependence of R=σ*_⊥/σ_T *in Deep Inelastic Scattering*

E99-118 p,d targets Q^2 =0.1-1.7 GeV² Measure of R=F_L/F_T

BoNuS: d(e,e'p_s)X

★WG1PS2: Slava Tkachenko Model independent extraction of neutron structure functions from deuterium data

Detect the spectator proton from deuterium following en scattering. Make kinematic corrections using the spectator proton's energy Es and momentum ps.

BoNuS Results for F₂ⁿ

★WG1PS2: Slava Tkachenko Model independent extraction of neutron structure functions from deuterium data

- First data from a 'free' neutron target
- Black line (right) is Bosted/ Christy model
- Black lines (below) are the CTEQX errors band

Global PDF fits at JLab

★WG1PS2: Jeff Owens *Uncertainties in determining the d quark PDF at large values of x*

CTEQ-JLab (CJ) collaboration

Accardi, Christy, Keppel, Melnitchouk, Monaghan, Morfin, Owens, Zhu

- Focus on large-x, small-Q² region
 - -fully exploit SLAC and JLab data
 - reduced PDF uncertainty at large x
- Flexible d-quark parametrization
 - -extract d/u ratio at x→1
- Large nuclear uncertainty
 - -d-quark (and gluons)!
 - -need BONUS12, MARATHON, PV-DIS
- Polarized PDFs:
 - New JLab Theory/Experiment initiative
 - Use current & future data over extended x & Q² range

g₁ Data w/o CLAS

g₁ Data w/ CLAS

★WG7PS3:Yelena Prok

CLAS g₁ Moments

Jefferson Lab @ 6 GeV explores the transition from DIS to χPT

11 April 2011 DIS 2011 16

Higher Twist in Moments

CLAS data make moments possible

$$M_1(Q^2) = \int_0^1 dx \, \frac{\xi^2}{x^2} \left\{ g_1(x, Q^2) \left(\frac{x}{\xi} - \frac{1}{9} \frac{M^2 x \xi}{Q^2} \right) \right\}$$

$$\xi = 2x/(1 + \sqrt{1 + 4M^2x^2/Q^2})$$
 $-g_2(x, Q^2)\frac{4}{3}\frac{M^2x^2}{Q^2}$,

Osipenko et al, PRD71(05)054007 Polarized Nachtmann moments

Hall C SANE

★WG6PSH1: Hovhannes Baghdasaryan Preliminary proton spin asymmetry results from SANE

Hall C SANE

★WG6PSH1: Hovhannes Baghdasaryan Preliminary proton spin asymmetry results from SANE

DIS 2011 19 11 April 2011

Hall C EMC Effect

Seely et al, PRL103(09)202301

- Recent data from JLab are very precise.
- Slope with respect to x is used to characterize the strength of the effect
- ⁹Be anomaly is used to argue for a local-density origin of the effect

11 April 2011 DIS 2011 20

Hall A g₂ⁿ

higher twist coefficient

$$d_2(Q^2) = \int_0^1 dx \, x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)]$$

Burkhardt-Cottingham Sum Rule

$$\int_0^1 g_2(x, Q^2) dx = 0$$

• Γ_2^{WW} is sum of g_2^{WW} for W>2 GeV

Semi-Inclusive DIS

Differential Cross Section

$$\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} =$$

Bacchetta, et al., JHEP 2(2007)093

Unpolarized and Longitudinally polarized

$$\frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU,L}^{\cos \phi_h} \right\}$$

$$+ \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin\phi_h F_{LU}^{\sin\phi_h}$$

$$+ S_{\parallel} \left[\sqrt{2 \varepsilon (1 + \varepsilon)} \sin \phi_h F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h} \right]$$

$$+ S_{\parallel} \lambda_e \left[\sqrt{1 - arepsilon^2} F_{LL} + \sqrt{2 \, arepsilon (1 - arepsilon)} \, \cos \phi_h \, F_{LL}^{\cos \phi_h}
ight] \,
ight\}$$

A_{UL} = {UL terms} / {UU terms}

 $A_{LL} = \{LL \text{ terms}\} / \{UU \text{ terms}\}$

= Higher Twist

Differential Cross Section

$$\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} =$$

$$\frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ \frac{1}{2} \left(1 + \frac{\gamma^2}{2x}\right) \right\}$$

Bacchetta, et al., JHEP 2(2007)093

Transverse target polarizations

$$\overline{xyQ^2} \ \overline{2(1-arepsilon)} \ \left(\begin{array}{c} 1+\overline{2x} \end{array} \right) \left(\begin{array}{c} 0 \ ext{at high Q}^2 \end{array} \right) + |\boldsymbol{S}_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + arepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right]$$

$$+ \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)}$$

$$+\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)}$$

$$+ |S_{\perp}| \lambda_e \left[\sqrt{1 - \varepsilon^2} \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2 \varepsilon (1 - \varepsilon)} \cos \phi_S F_{LT}^{\cos \phi_S} \right]$$

$$+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h-\phi_S)F_{LT}^{\cos(2\phi_h-\phi_S)}$$
,

TMDs and Fragmentation

The observables are the structure functions such as $F^{\sin\phi}_{UL}$, not the transverse momentum distributions (TMDs) or fragmentation functions (FFs). Four-fold differential data in x, z, Q^2 and P_T are essential to allow modeling of TMDs and FFs.

$$\mathcal{C}[wfD] = x \sum_{a} e_a^2 \int d^2 \mathbf{p}_T d^2 \mathbf{k}_T \, \delta^{(2)} (\mathbf{p}_T - \mathbf{k}_T - \mathbf{P}_{h\perp}/z) \, w(\mathbf{p}_T, \mathbf{k}_T) \, f^a(x, p_T^2) \, D^a(z, k_T^2),$$

$$F_{UL}^{\sin\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(x h_L H_1^{\perp} + \frac{M_h}{M} g_{1L} \frac{\tilde{\boldsymbol{G}}^{\perp}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(x f_L^{\perp} D_1 - \frac{M_h}{M} h_{1L}^{\perp} \frac{\tilde{\boldsymbol{H}}}{z} \right) \right]$$

$$F_{UL}^{\sin 2\phi_h} = \mathcal{C} \left[-\frac{2 \left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T \right) \left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T \right) - \boldsymbol{k}_T \cdot \boldsymbol{p}_T}{M M_h} h_{1L}^{\perp} H_1^{\perp} \right],$$

$$F_{LL} = \mathcal{C}\big[g_{1L}D_1\big]$$

$$F_{LL}^{\cos\phi_h} = \frac{2M}{Q}\,\mathcal{C}\bigg[\frac{\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_T}{M_h}\bigg(xe_LH_1^{\perp} - \frac{M_h}{M}\,g_{1L}\frac{\tilde{D}^{\perp}}{z}\bigg) - \frac{\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_T}{M}\bigg(xg_L^{\perp}D_1 + \frac{M_h}{M}\,h_{1L}^{\perp}\frac{\tilde{E}}{z}\bigg)\bigg]$$

11 April 2011 DIS 2011 25

CLAS ALU

- Mher Aghasyan et al., E01-113 in preparation for publication
- CLAS data for A_{UL}π°
- Unpolarized liquid hydrogen target
- Beam energy of 5.776 GeV
- $Q^2 > 1$; 0.4 < z < 0.7

CLAS ALU

★WG6PST3: Wes Gohn Beam single spin asymmetries in SIDIS from an unpolarized proton

- CLAS data from E1f run period (2003)
- Unpolarized liquid hydrogen target
- Longitudinal beam polarization of 75%
- Beam energy of 5.498 GeV

CLAS, Avakian et al, PRC69(04)042201 HERMES, Airapetian et al, PLB648(07)164

Asymmetries from eg1b

11 April 2011 DIS 2011 28

$A_1 \approx g_1/F_1$ for eg1-dvcs

★WG6PST3: Sucheta Jawalkar Spin azimuthal asymmetries on longitudinally polarized proton

$$f_1^q(x, k_T) = f_1(x) \frac{1}{\pi \mu_0^2} \exp\left(-\frac{k_T^2}{\mu_0^2}\right)$$
$$g_1^q(x, k_T) = g_1(x) \frac{1}{\pi \mu_2^2} \exp\left(-\frac{k_T^2}{\mu_2^2}\right)$$

$$D_1^q(z, p_T) = D_1(z) \frac{1}{\pi \mu_D^2} \exp\left(-\frac{p_T^2}{\mu_D^2}\right),$$

- eg1-dvcs data (25%) of total
- P_T dependence $\rightarrow \mu_0 \neq \mu_2$
- For π^+ , π^- and π^0

CLAS

11 April 2011

DIS 2011

29

A_{UL} for eg1-dvcs

★WG6PST3: Sucheta Jawalkar Spin azimuthal asymmetries on longitudinally polarized proton

The target spin asymmetries as a function of ϕ have both $sin\phi$ and $sin2\phi$ components.

 $A^{\sin\phi}_{UL}$ (higher twist) is significant for π^+ , π^0

A^{sin2φ}_{UL} (leading twist) is small suggesting, like for eg1b and HERMES, that the Collins favored and unfavored fragmentation functions are nearly equal and opposite.

CLAS

$^{3}He^{\uparrow}(\vec{e},e'\pi^{\pm})X$

E06-010: Transversity

Spokesepersons: J. P. Chen, E. Cisbani, H. Gao, X. Jiang, J. C. Peng

- First measurement on n
- •Polarized ³He target

Hall A E06-010 A_{UT}

★WG6PST4: Kalyan Allada Single spin asymmetry results from neutron

X. Qian, et al., in preparation

$$2 < \cos(\phi_h + \phi_s) > \propto h_{1T}^q \otimes H_{1q}^h$$

$$2 < \cos(\phi_h - \phi_s) > \propto f_{1T}^q \otimes D_{1q}^h$$

Aut

- Preliminary Collins/Sivers for n
- 5.9 GeV electron beam
- Polarized ³He target
- $\bullet 0.14 < x < 0.35$
- $1.3 < Q^2 < 2.7 \text{ GeV}^2$
- Still working on systematic uncertainties
- Curves: diquark model (Ma), global fit (Anselmino), lightcone quark model (Pasquini)

Hall A A_{LT} for the Neutron

★WG6PST2: Jin Huang Measurement of double spin asymmetry A_{LT}

At leading twist: $A_{\rm LT}^{\cos(\phi_h - \phi_s)} \propto g_{1T}^q \otimes D_{1q}^h$

11 April 2011 DIS 2011 33

DIS Lambda Production

★WG6PSTV: Marco Mirazita Lambda polarization in electroproduction at CLAS

$$P_{\Lambda}^{measured} = P_{\Lambda}^{0} + P_{\Lambda}^{\cos\phi} \langle \cos(\phi) \rangle \approx P_{\Lambda}^{0} - 0.85 P_{\Lambda}^{\cos\phi}$$

$$x_F < 0$$
 $P_\Lambda^{measured} \sim 0.3$
 $\Rightarrow P_\Lambda^0 \neq P_\Lambda^{\cos\phi}$
 $x_F > 0$
 $P_\Lambda^{measured} \sim 0.$

DVCS and **DVMP**

★WG2PSVM: Valery Kubarovsky Vector-mesons production and DVCS at JLab

$$\frac{d^4\sigma}{dQ^2dx_Bdtd\phi} \sim |T^{DVCS} + T^{BH}|^2$$

$$A_{LU} \sim \Im m \left\{ F_1 \mathcal{H} + \xi (F_1 + F_2) \widetilde{\mathcal{H}} - \frac{\Delta^2}{4M^2} F_2 \mathcal{E} \right\} \sin \phi$$

suppressed

$$A_{UL} = \Im m \left\{ F_1 \widetilde{\mathcal{H}} + \xi (F_1 + F_2) \left(\mathcal{H} - \frac{x_B}{2} \mathcal{E} \right) - \xi \left(\frac{x_B}{2} F_1 + \frac{\Delta^2}{4M^2} F_2 \right) \widetilde{\mathcal{E}} \right\} \sin \phi$$

sinφ moments of A_{LU} and A_{UL} are related to linear combinations of generalized parton distributions

$$A = \alpha \sin \phi + \beta \sin 2\phi$$
higher twist

11 April 2011 DIS 2011 35

ρ^0 DVMP @ CLAS

Fig. 26. Longitudinal cross-section $d\sigma_L/dt$ (in $\mu b/GeV^2$) for all bins in (Q^2, x_B) as a function of t (in GeV^2). The thick solid curve represents the result of the VGG calculation with the addition of the generalized D-term. The dash-dotted curve is the result of the JML model.

CLAS DVCS ALU

G. GAVALIAN et al.

$$A = \alpha \sin \phi + \beta \sin 2\phi$$

PHYSICAL REVIEW C 80, 035206 (2009)

TABLE III. Results from the fits to the ϕ dependences of A_{LU} with the functions presented in Eqs. (19) and (22). Only statistical uncertainties are presented.

$\langle Q^2 \rangle [(\text{GeV}/c)^2]$	$\langle x_B \rangle$	$\langle -t \rangle [(\text{GeV}/c)^2]$	α	β	$\boldsymbol{\alpha}'$	γ
1.22	0.17	0.23	0.181 ± 0.032	0.099 ± 0.023	0.181 ± 0.032	-0.098 ± 0.228
1.51	0.20	0.26	0.245 ± 0.028 -	-0.040 ± 0.021	$\boldsymbol{0.234 \pm 0.024}$	0.319 ± 0.195
2.04	0.28	0.38	$\boldsymbol{0.192 \pm 0.044}$	$\boldsymbol{0.010 \pm 0.030}$	$\boldsymbol{0.191 \pm 0.045}$	-0.107 ± 0.288

DVCS Target SSA

★WG6PSHP1: Andrey Kim Studies of exclusive processes with a longitudinally polarized target

$$A = \alpha \sin \phi + \beta \sin 2\phi$$

CLAS eg1-dvcs data

11 April 2011 DIS 2011 38

DVMP Target SSA

★WG6PSHP1: Andrey Kim Studies of exclusive processes with a longitudinally polarized target

Conclusions

- Jefferson Lab has an intense program on:
 - unpolarized and polarized inclusive DIS
 - semi-inclusive DIS with pions
 - DVCS
 - DVMS with pions and rhos
 - using proton, deuteron, ³He, and nuclear targets
- Details of these topics can be found:
 - in the advertised talks at DIS2011

11 April 2011 **DIS 2011** 40